
Mobile Multimedia Processing

UMIC

Fakultät für Mathematik, Informatik und Naturwissenschaften
Lehrstuhl für Informatik VIII (Computergraphik, Computer Vision und Multimedia)

Computer Vision
Prof. Dr. Bastian Leibe

Seminar Report

Feature mining for localized crowd counting

István Sárándi
Matriculation Number: 328707

June 2013

Advisor: Wolfgang Mehner



Abstract

In this seminar report I analyze methods for counting people in images by means of computer vision
and machine learning algorithms. The two main ways to solve this task are by detection of each individual
person and by regression based on low-level image features. My focus is the feature-based regression
approach with special attention to locality introduced by grid subdivision. I implement a system based
on a recent paper by Chen et al., using foreground mask-based, edge-based and texture-based features to
train multivariate ridge regression and multivariate kernel ridge regression models. Overall, my system
achieves 26% lower mean absolute error than the one presented in said paper on the same dataset.
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1 Introduction
Video surveillance systems are becoming ubiquitous (see Figure 1 for example CCTV images) and there
is a considerably large demand for algorithms that can process their data automatically. These systems
are used for a variety of applications, including the detection of suspicious behavior for security reasons,
avoiding dangerous crowd dynamics in enclosed spaces and improving advertisement placement[CLG+12].
Traditionally, these tasks were solved by human labor, by having employees watch the video stream of
surveillance cameras. With the advance of computer vision algorithms, it has become possible to automatize
several aspects of these tasks and thus to reduce costs.

Figure 1: Examples of different scenes under video surveillance. Sources: [CCL99], [RB06], [CLG+12],
[CLV08], [ZN03]

The topic of this seminar report is one of the basic questions one may ask when monitoring public spaces:
How many people are there in the scene? This estimation of the number of people is commonly referred
to as the crowd counting or the people counting problem. This topic is currently of great interest in the
computer vision community and several different problem formulations and solution have been proposed
for it. There are some other, closely related questions, for example, analyzing a video stream to count
the number of people crossing a given line in the image[BIY+10]. This report, however, concentrates on
counting the people in each individual frame (but not necessarily independently of each other).
Some applications have special requirements for locality or directionality, i.e. separately counting the
people that are in different parts of the image or moving in different directions. In some cases special
care must be taken to ensure privacy. Depending on the requirements, different approaches have been
invented.
The two main types of solutions in the literature are detection-based and regression-based methods.
Detection-based methods find each person one-by-one and are typically more computationally complex.
Additionally, according to some authors[CLV08], these methods are a concern for preserving privacy.
Regression-based methods on the other hand are claimed to be privacy preserving. Furthermore, image
processing and machine learning can be decoupled in the standard regression framework, so that the use of
established machine learning algorithms independent of comuter vision becomes possible.
I researched the scientific literature about existing approaches and, in particular, examined the solution
proposed by Chen et al. in their publication Feature mining for localised crowd counting[CLG+12]. An
original contribution of this report is the use of multivariate kernel ridge regression for localized crowd
counting, which improves the accuracy of the estimation.
The rest of the report is structured as follows. In Section 2, I review the approaches described in a wide
range of publications. Section 3 contains the detailed explanation of the method that I implemented, based
on the one used by Chen et al.[CLG+12]. In Section 4, I evaluate my implementation and analyze the
results. Finally, Section 5 concludes the report by summarizing and discussing the presented solution.
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2 Related work
Recently, there has been a great research interest in the crowd counting problem in the computer vision
community. First, I examine the different requirements that may be posed on the solution in order to get a
better understanding of the task. Then I review the algorithmic solutions that have been proposed.

2.1 Requirements
Choosing the right algorithm to solve the crowd counting problem depends on the requirements of the
particular application. In the following, I describe the main aspects to consider.
The most important distinctions are between local and global estimation, quantitative and qualitative es-
timation and directionality-aware and non-directionality-aware estimation. Further requirements can be
robustness against certain changes, constraints on computational complexity and preserving privacy.

2.1.1 Local vs. global

Local methods estimate the crowd size for different parts of the image, whereas global methods only esti-
mate the overall crowd size for the whole image. Depending on the application, local or global counting
may be more suitable. In a shopping mall, for example, one is not only interested in the overall people
count in the scene, but also wants to discriminate between different locations of the scene[CLG+12], thus
for example measuring the popularity of different shops. Local counting is most easily formalized using
a cell-based approach, in which the image is subdivided into a grid of equally sized rectangular cells and
the task is to estimate the number of people in each cell. Since people may extend over multiple cells, a
reference point has to be chosen on each person and the task is then refined to the estimation of reference
points in each cell (see Figure 2). Usually the head is taken as a reference point, due to its good visibility
on CCTV images and its prominent shape. A disadvantage of this formulation is that areas of interest (e.g.
shops) and cells are not in a one-to-one correspondence in the image. One solution to this problem could
be to create custom shaped regions in the image instead of the rectangular cell grid. Another way is to
reduce the cell size, in the extreme case even to the one-cell-per-pixel scale as done in [LZ10]. With such
estimation, counting is possible for any custom shaped area by summing up the counts in the cells/pixels
contained in the area.

Figure 2: Locality can be introduced by grid cell-based subdivision. The number of reference points (heads)
is displayed for each cell.

2.1.2 Directionality

There are applications in which not only the number of people is interesting, but also their movements. A
basic piece of information about the movement of people is the direction in which they move. Counting
the people going in different directions separately may be a requirement for the application or just a way to
improve the overall performance of a solution. Such an application could be keeping track of the number
of people in an enclosed space (e.g. a disco) by counting the entering and exiting people. Chan et al. use
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a mixture of dynamic textures to segment the crowd into two groups[CLV08], one coming towards and
one going away from the camera (see Figure 3). Since people look different when coming and going, the
authors could make their system specifically learn the characteristics of each group, possibly increasing
the performance of their solution. This segmentation based approach can introduce directionality to any
counting method, by separately counting the people in each segment.
It must be noted, however, that movement-based approaches work only if the video frame rate is sufficiently
high.

Figure 3: Crowd segmentation based on motion[CLV08].

2.1.3 Quantitative vs. qualitative

On a subway platform, a qualitative degree of crowdedness may be sufficient instead of the actual quanti-
tative crowd size in order to ensure safety of the passengers. This qualitative crowdedness may be defined
as the ratio of the current people count and the maximum possible people count in that area. The authors of
[CCL99] use a global crowdedness formulation although a localized version is equally possible. Depend-
ing on the applied method, estimating the qualtitative crowdedness may be easier than estimating the count
itself. Ma et al. use 5 discrete crowdedness classes and classify each image frame according to one of the
classes[MHL10].

2.1.4 Robustness

It may be required that the estimation remain robust against changes in lighting conditions, movements of
the camera or even to a full location change. In some applications (e.g. subway platform monitoring) light-
ing conditions and camera position remain approximately constant. In outdoor environments, day and night
cause strong changes in lighting, which must be taken into consideration when choosing or customizing an
algorithm.
It is also important to assess the amount of manual and computational work needed if the camera position
has to be changed.

2.1.5 Computational complexity

An important aspect to consider when developing any algorithm is the computational complexity. Since
real-time performance is crucial in security applications, the complexity of the algorithm is of high impor-
tance in many crowd counting scenarios. In other applications (e.g. analyzing people behavior in shopping
malls to improve the location of advertisements) the real-time requirement may not apply. It is also worth
noting that a method that is unsuitable for real-time applications today may be suitable in the future.

2.1.6 Privacy concerns

There is also a non-technical aspect to be considered, namely the protection of personal data, in other words,
preserving the privacy of individuals. Several articles have been published about the public acceptance and
legal regulations of CCTV surveillance and the issues of algorithmic analysis of these video streams. Davies
and Velastin note[DV05] that in most countries, CCTV is not seen as an intrusion into the private sphere of
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the individual. However, Ferenbok et al. state[FCD+11] that the transition towards intelligent processing
is happening largely out of the public eye, implying that it is hard to determine what society would still
accept as non-intrusive processing, since they are not even aware of the question. Oram quotes[Ora11] the
guidance of the United Kingdom’s Information Commissioner’s Office stating that regarding privacy, "The
simple rule of thumb is that you need to decide whether the image you have taken is aimed at learning about
a particular person’s activities". Applying this guideline, most crowd counting algorithms seem to be on
the safe side, since their aim is to analyze the properties of crowds and not individual people. According
to Chan et al.[CLV08], the algorithmic methodology also plays a role in determining whether a particular
application violates privacy or not. I am not convinced by this reasoning, seeing that most laws and legal
guidelines (similarly to the one mentioned above) are formulated in a general way that focuses on the
purpose of the processing and mostly do not care about technical details of the method. If the system’s
overall task is to count people, I cannot to see the relevance of the intermediate steps (provided that the
extraced data is not used for other purposes).

2.2 Algorithmic solutions
Most of the solutions proposed for the crowd counting problem can be categorized as either detection-based
algorithms or feature-based regression algorithms. Detection-based algorithms can be further subdivided as
static (based on individual images) and dynamic (based on motion).

2.2.1 Static detection-based methods

The most straightforward way to count people is to find them one-by-one in each individual the frame. One
such approach is presented by Leibe et al.[LSS05], where video is used only in the training phase to avoid
manual segmentation.

• Locality: Fulfilling the locality requirement is trivial with these methods. Since each pedestrian is
localized in the image, counting them in any custom area is straightforward.

• Robustness: Robustness against lighting conditions depends on the robustness of the detector. Chang-
ing the camera position generally does not cause any problems, as a properly trained pedestrian de-
tector will still detect the people.

• Computational complexity: Detection-based methods often involve exhaustive search over the image
(e.g. with a multi-scale sliding window) and the classification of the respective image parts as ei-
ther person or non-person. This exhaustive search may be too computationally expensive[CLG+12],
depending on the requirements.

• Privacy concerns: Chan et al. claim in [CLV08] that the detection step may be considered by some
people as an "attempt to ’single out’ the individual", and suggest to use only low-level features of the
image to preserve privacy.

Another concern about detection-based methods is that they may perform poorly if large parts of the persons
are occluded, which is common in crowd counting scenarios. This problem was addressed by Lin et al. by
using a head detector instead of a full-body pedestrian detector[LCC01], since the head is usually not
occluded due to the positioning of CCTV cameras well above head-height. The method described by Leibe
et al. is claimed to be robust against occlusion by integrating local and global cues[LSS05].

2.2.2 Dynamic detection-based methods (trajectory clustering)

The second main type of approaches proposed in the literature for counting the number of people is based
on keeping track of points moving together in the image sequence. Coherent motion of points suggests
that they belong to the same person[BC06], and thus clustering these trajectories and counting the clusters
can solve the crowd counting problem. Motion information can be extracted from the video by track-
ing keypoints (detected by methods such as the Harris corner detection algorithm[HS88]) and optical
flow[KBN11][FHTN12] or a combination. These methods cannot be applied if the video frame rate is
low.
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• Locality: Since trajectories are inherently location-based, locality is trivially introduced in these
approaches.

• Robustness: New camera positions do not pose a big problem, as trajectory clustering can be applied
even within an unsupervised framework (as in [BC06]), meaning that the manual labor associated
with a new setup is minimal.

2.2.3 Feature-based regression

The third main category of approaches is based on the standard regression framework. The image is first
mapped to a list of real numbers (feature vector) by feature extraction, and a regression function is learned
that maps from the feature vector to the target variable. The target variable may either be a qualitative
density category ([MHL10] uses 5 levels) or directly the number of people. Approaches of this category
differ in the choice of features and the learning algorithm for optimizing the regression function. The
features might include motion features[KGT05] or only static information.
Since regression algorithms are supervised, ground-truth target values must be created manually.

• Locality: Locality can be introduced to regression-based methods by subdividing the image to multi-
ple cells and learning a multi-output regression function where each output corresponds to the number
of people in one cell. Approaches differ in whether they use information from other cells to predict the
number of people in a given cell[CLG+12] or only the features in the given cell are used[WLLX06].
The former way exploits information sharing between cells.

• Robustness: Robustness against lighting changes depends on the extracted features. Camera reloca-
tion may mean that new training data has to be acquired with new manual ground truth. In [KGT05],
the authors use viewpoint invariant training to combat this problem.

• Computational complexity: Complexity can range from the very efficient (e.g. simple features and
linear regression) to the very expensive (complex features and neural networks with several hidden
layers).

• Privacy concerns: According to Chan et al.[CLV08], regression based on low-level features is prefer-
able in privacy-sensitive cases, as they do not locate or track individuals.

3 Methodology
In this section I review and expand upon the approach presented in [CLG+12], the paper of focus for this
seminar topic. It is a feature-based regression method with rectangular grid-based locality estimating the
people count in each grid cell. It makes use of feature mining and information sharing between the grid
cells. Feature mining means that each feature can have different importance in different cells. Information
sharing means that the features extracted from all the cells are used to predict the people count in each cell,
not only the features that are extracted from that one cell.

3.1 Overview
There are two main steps to this method. First, a feature vector has to be assembled for each frame, and
second, some learning algorithm must be applied to learn a regression from this feature vector to the multi-
dimensional output (people count in each grid cell).Feature extraction starts with foreground segmentation.
Then three types of features are extracted from each grid cell independently: foreground mask-based fea-
tures (e.g. foreground area), edge-based features (e.g. edge orientation histogram) and texture-based fea-
tures (using gray-level co-occurrence matrices). In order to compensate for perspective distortion, pixels
are weighted according to scale when calculating the features. After extraction, the features of each grid
cell are concatenated to create one long feature vector describing the whole frame. In the second main step,
a regression algorithm is used to learn the functional dependency between image features and people counts
in each cell. Chen et al. chose the multivariate ridge regression learning algorithm, as described in [Hai87].
I will also apply multivariate kernel ridge regression. For an illustration of the procedure, see Figure 4.
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Figure 4: The overall procedure of the implemented people counting system.

3.2 Feature extraction
Following Chen et al. and Chan et al., I extract three types of features from each grid cell (29 features in
total for each cell):

• Foreground mask-based features: foreground area, number of pixels on the foreground perimeter,
perimeter-area ratio, perimeter orientation histogram. (9 features)

• Edge-based features: number of edge pixels, edge orientation histogram, Minkowski dimension (8
features)

• Texture-based features: homogeneity, energy and entropy, calculated from gray-level co-occurrence
matrices (GLCM) (12 features)

3.2.1 Foreground mask-based features

Foreground mask-based features require binary segmentation of the frame to background and foreground.
Chen et al. do not elaborate on the details of this step. Chan et al. perform segmentation based on motion
with dynamic motion textures (see Figure 3). I found that if the lighting changes are negligible, a single
photo of the scene without any people is sufficient as reference. Then the thresholded absolute difference of
the empty scene and a given frame can be used as the foreground mask. To avoid detection of bright sunny
spots as foreground, very bright areas are excluded from the mask. In this formulation the foreground
mask M is generated in the following way, using the current frame I, the image of the empty scene BG and
threshold parameters t1 and t2.

M(x,y) =

{
1, if |I(x,y)−BG(x,y)|> t1 and I(x,y)< t2
0, otherwise

(1)

A more robust method is to build a background model of the image and label parts of the image as fore-
ground that are improbable to be explained by the background model. Such an approach based on Gaussian
mixture models (GMM) for each pixel is described in [Ziv04]. It is an adaptive method in the sense that the
background model is constantly updated with each new frame and recent frames are more important than
older ones.
In order to remove noise, masks are post-processed by a closing and an opening morphological operation.
Comparing the two methods (see Figure 5), it can be noted that the first and simpler method is sufficient
and also gives more visually appealing results than the more complex one, at least for the given scene.
Unfortunately, there is no frame in the mall dataset that contains no people. Hence, I had to assemble an
empty scene by putting together different empty parts of multiple frames. There is one person, who stays at
the same place during the whole time (more than an hour), he was removed by manual image manipulation
to create the empty image.
The features extracted from the foreground mask are:
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Figure 5: Results of foreground segmentation for frame #11 (first row) and frame #1811 (second row) of
the mall dataset. Left column: original; Middle column: difference to a single background image (empty
scene) using t1 = 40, t2 = 200; Right column: Mixture of Gaussians background modeling, using history
length 10 and variance threshold 15.0. All masks have been post-processed by a closing and an opening
operation (self-generated).

• Foreground area: The number of pixels in the foreground mask, obtained by background segmenta-
tion. The intuition is that, roughly speaking, the larger the foreground, the more people there are in
the scene.

• Perimeter length: The number of pixels on the perimeter of the foreground mask. The perimeter
image P can be obtained using morphological operations on the foreground mask M (see result in
Figure 6):

P = M− (M	S3×3) (2)

where 	 denotes erosion and S3×3 is a 3x3 square structuring element.

• Perimeter-area ratio: The ratio between perimeter length and foreground area. If this number is
large, it can be an indication that there are more people in the scene, since the head and limbs of
people create bumpy structures in the foreground. The inclusion of this feature may seem redundant
but it is still needed if the learning algorithm used in the next step is incapable of capturing non-linear
relationships.

• Perimeter orientation histogram: The perimeter orientation histogram is obtained by first quantizing
the orientation at each perimeter point to 6 bins and then counting the number of occurrences of each
bin. Opposite directions are considered the same. The orientation at a given pixel can be calculated
by finding the maximum response to a set of oriented ellipse-shaped Gaussian filters as in [CLV08].
An alternative choice is to determine and quantize the gradient direction by using the Sobel filter
(discrete version of the derivative of Gaussian). More specifically I first apply the Sobel filter on the
image in both x and y direction to obtain directional derivatives, and second, I use the arctan function
to find the gradient angle.

3.2.2 Edge-based features

The edge patterns inside the foreground regions give us additional cues about the number of people con-
tained within the foreground blobs. In case of strong occlusions, segmentation-based features alone may
not be able to accurately differentiate between one larger or two smaller occluding persons.
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Figure 6: Left: foreground mask, right: perimeter extracted from the foreground mask.

Figure 7: The edges of the foreground, as detected by the Canny algorithm.

Edges are extracted using the well-known hysteresis approach introduced by Canny[Can86], resulting in a
binary image, in which edges are 1 pixel thick. The edge map is then masked to the foreground region in
order to avoid irrelevant background edges (see Figure 7). Using this masked edge image, the following
features are extracted:

• Edge pixel count: The number of edge pixels in the edge map. More edges may indicate a cluttered
region with more people

• Edge orientation histogram: Analogous to the perimeter orientation histogram described above.

• Minkowski fractal dimension: The Minkowski fractal dimension is used to estimate the degree of
space filling of a curve, in this case the foreground edges. As described in [MdFCLV99], the
Minkowski dimension can be approximated using the following algorithm. The morphological op-
eration of dilation is applied to the image with successively larger and larger disk-shaped structuring
elements, so that the edges become thicker (becoming so called Minkowski sausages). For each of
these dilated images we compute the size of the filled area. This area will obviously increase with
growing disk size until it reaches the area of the whole image. The rate of growth of the filled area
A for growing disk diameter d is used to estimate the Minkowski dimension. First we apply log-log
transformation to the samples:

(d,A) 7→ (log(d), log(A)) (3)

Then least-squares linear regression is used to obtain the slope of this log-log plot resulting in the
approximation

log(A) = w1 · log(d)+w0

A = exp(w0) ·dw1
(4)

Finally, the Minkowski dimension m is approximated as

m = 2−w1. (5)
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Figure 8: Principle of the gray-level co-occurrence matrix with d = 1 and θ ∈ {0◦,45◦,90◦,135◦} (source:
[JD97]).

3.2.3 Texture-based features

As examined by Marana et al. in [MCLV98], texture features can be useful to estimate crowd density.
Both Chan et al. and Chen et al. use texture features based on gray-level co-occurrence matrices (GLCM)
to estimate the number of people[CLV08][CLG+12]. Given a distance d and an angle θ, the gray-level
co-occurrence matrix of an image I (quantized to q gray levels) is defined as

G(d,θ) ∈ Nq×q (6)

G(d,θ)i j =

∣∣∣∣∣
{(

(x1,y1),(x2,y2)
) ∣∣∣ dist

(
(x1,y1),(x2,y2)

)
= d and atan2(y2− y1,x2− x1) = θ

and I(x1,y1) = i and I(x2,y2) = j
}∣∣∣∣∣

(7)

Informally, it describes how many times two pixels that are at the given distance and angle to each other
have the gray level i and j, respectively. The GLCM is computed for d = 1 and θ∈ {0◦,45◦,90◦,135◦} (see
Figure 8), using only the foreground region, i.e. I only take those pairs into consideration that are both in
the foreground. The GLCM is then normalized, i.e. it is divided element-wise by the number of pixel-pairs
that were used to compute it.
Haralick et al.[HSD73] define 14 features that can be extracted from the normalized GLCM (N). Following
Chan et al., I use the following three of them.

• Homogeneity: H = ∑i, j
Ni j

1+(i− j)2

• Energy: E = ∑i, j N2
i j

• Entropy: S =−∑i, j Ni j logNi j

3.2.4 Perspective compensation

People at a larger distance appear smaller, which should be taken into consideration when calculating the
features. [KGT05], [CLG+12] and [CLV08] all use the same principle to combat perspective distortion.
Although the presentation in the respective papers is different, the method can be summarized as follows.
First, an approximate relative distance map d(x,y) or scale map s(x,y) = 1

d(x,y) is calculated for the image,
and second, this distance is later used to weight the contribution of individual pixels to the features. Kong
et al. estimate a homography between the ground plane and it’s projection in the image[KGT05], but as it
turns out, the linear approximation method explained below is also very accurate while being considerably
simpler.
Below, I provide the derivation of the functional dependency between the vertical position in the image and
the camera-to-scene distance. Assume a pinhole camera with no tilt (i.e. that vertical poles in the scene are
mapped to vertical lines in the image). Consider Figure 9. P is the point in the image plane that we are
interested in. The corresponding point in the scene is Q. Thus we need to calculate the distance d knowing
h, y and α. Using the law of cosines in triangle BCP for the angle at B:
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Figure 9: Sketch for calculating the distance at a given image point. h = BC, a =CP, d =CQ, y = BP

a2 = y2 +h2−2yhcos
(

π

2
−α

)
a =

√
y2 +h2−2yhsinα

(8)

The law of cosines for the angle at C yields

y2 = a2 +h2−2ahcosβ
(9)

By definition of the cosine, cosβ = h
d . Substituting this into Equation 9, we can obtain d as follow:

y2 = a2 +h2−2ah
h
d

d =
2ah2

a2 +h2− y2

=
2h2
√

y2 +h2−2yhsinα

y2 +h2−2yhsinα+h2− y2

=
2h
√

y2 +h2−2yhsinα

2h−2ysinα

=
h
√

y2 +h2−2yhsinα

h− ysinα

(10)

The interesting range of y (those values that correspond to points within the image boundaries) can be
determined by specifying the camera height h and the angles ]BCE and ]BCD. Then in triangle BCE, one
side (h) and the two angles adjacent to this side are known. From that, any other side can be calculated.
Similarly for BCD. It can be shown that

BE =
h tan]BCE

cosα+ sinα tan]BCE

BD =
h tan]BCD

cosα+ sinα tan]BCD

(11)

The parameters h = 5, α = 60◦, ]BCE = 40◦ and ]BCD = 80◦ seem reasonable. For these values BE ≈
3.42 and BD ≈ 5.24. With these parameter settings, Figure 11 shows how d changes with y according to
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Figure 10: Inferring the perspective scale map. The height of the same person is measured when she is near
and far from the camera. The scale function is then a linear interpolation using these values.

Equation 10. The reciprocal of the distance function (s = 1/d), despite being non-linear on the whole,
can be well approximated by a linear function in the interesting range (with a coefficient of determination
R2 = 1.000). Thus, I conclude that the linear approximation used by Chen et al. is theoretically well-
founded, and I will evaluate how it empirically affects the quality of the estimation.
As suggested by Chan et al., the approximate scale map can be acquired for a concrete application by
measuring the same person’s height when she is at the bottom of the image and again when she is at the top
of the image. The values in between are linearly interpolated to get a scale map s(x,y) (see Figure 10).
All features, except for the Minkowski fractal dimension and the texture-based features, can then easily be
corrected by weighting each pixel’s contribution with the inverse of the linearly interpolated scale map. For
example the perimeter length feature p is then not the actual number of pixels of the perimeter image P, but
a weighted version of it:

p = ∑
(x,y): P(x,y)=1

1
s(x,y)

(12)

Area-based features grow quadratically with scale (e.g. the foreground area f of the foreground mask M)
and have to be weighted quadratically:

f = ∑
(x,y): M(x,y)=1

1
s2(x,y)

(13)

Histogram features can be weighted by accumulating the 1
s(x,y) weights in each bin instead of simply count-

ing the pixels.

3.3 Regression

The second step of feature-based regression methods is to learn the functional relationship between image
features and ground truth people counts using a regression algorithm. Each of the N frames are subdivided
to K cells. As in the paper by Chen et al., frame #i is represented by a long vector xi, composed by
concatenating the feature vectors z j

i of each cell 1 ≤ j ≤ K in the frame. Let the full length of these
concatenated feature vectors be D.
The people counts u j

i (frame i, cell j) are put together to get the desired vectorial output yi ∈ NK of the
system, containing the people counts for each cell of the frame.
Vectors are considered to be row vectors throughout the whole report.

xi =
[
z1

i ,z
2
i , . . . ,z

K
i
]
∈ RD

yi =
[
u1

i ,u
2
i , . . . ,u

K
i
]
∈ NK

(14)
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Figure 11: Top left: Plot of the exact distance of the scene point (d), when varying the vertical position on
the image plane (y). Top right: The same plot, showing only the range for y within the image boundaries.
Bottom row: plots of the reciprocal function s = 1/d

3.3.1 Multivariate ridge regression

Ridge regression is the name of least-squares linear regression with L2-regularization. In multivariate ridge
regression the target variable is a vector and not a scalar. Since this is a linear model, we are looking for a
weight matrix W and a bias vector b, such that the function

ŷ(x) = xW +b (15)

is a good approximation for the training set. In ridge regression, the following criterion is minimized

J(W,b) =
1
2
||W ||2F +C

N

∑
i=1
||yi− (xiW +b)||2F , (16)

where ||·||F denotes the Frobenius norm (for which ||A||2F = ∑i, j A2
i j) and C controls the strength of regular-

ization (the smaller C is, the stronger the regularization).

To make the notation more compact, let x̃ =
[
x 1

]
and W̃ =

[
W
b

]
∈ R(D+1)×K . Let X̃ ∈ RN×D denote the

matrix obtained by stacking the row vectors x̃i on each other for all training samples 1 ≤ i ≤ N. Similarly
let Y ∈ ZN×K denote the same for the yi vectors. It can be shown[Hai87] that the optimal solution for W̃ is

W̃ =
(

X̃>X̃ +R
)−1

X̃>Y, (17)

where R is the diagonal matrix responsible for regularization of the weights. The bias components are
usually not regularized, hence the last component is 0.

R =
1

2C
diag

([
1 1 . . . 1 0

])
∈ R(D+1)×(D+1) (18)
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The main claim of Chen et al. is that crowd counting can benefit from feature mining and information shar-
ing between cells. The multivariate ridge regression has the capability to make use of both. Feature mining
is the phenomenon that the same feature (i.e. foreground segment area) can have different importance in
different cells. This is indeed possible with multivariate ridge regression, since each output variable has its
own set of weights in the weight matrix. Information sharing becomes also possible as all output variables
are calculated by a weighted sum of the features from all cells. By contrast, if a separate regression model
were learned for each cell, this would not be possible.

3.3.2 Multivariate kernel ridge regression (Gaussian process regression)

Ridge regression, as presented above, can only fit a linear model to the data. This is a considerable restric-
tion and it is worth examining if allowing the nonlinear models can improve the performance of people
counting. One way to introduce nonlinear capabilities over a linear learning algorithm is to map the input
vectors to a (typically higher dimensional) feature space and perform the linear fitting in that feature space.
This results in the following optimization criterion in case of multivariate ridge regression:

J(W ) =
1
2
||W ||2F +C

N

∑
i=1
||yi−φ(xi)W ||2F , (19)

where φ : RD→ RH is the mapping to the higher, H-dimensional feature space. Note that there is no bias
term in this formulation. If needed, the φ(·) mapping can emulate it by mapping to vectors that have a
constant 1 component. The equation can be transformed by introducing

A :=−2C · (ΦW −Y ), for which

W = Φ
>A

(20)

The equivalent task is then to minimize

Jdual(A) =
1
2

tr
(

A>ΦΦ
>A
)
+C · tr

(
A>ΦΦ

>
ΦΦ

>A−2Y>ΦΦ
>A+Y>Y

)
, (21)

where tr(·) denotes the trace of a matrix, i.e. the sum of the elements on the main diagonal.
In this formulation, all φ(xi) vectors appear only in dot products with other φ(x j) vectors. This allows for
a shortcut, the so called kernel trick. The kernel function is defined as k(xi,x j) = xi ·φ(x j). It is possible
to construct and calculate the kernel function, without explicitly defining or calculating the corresponding
φ(·) function, resulting in the possibility of using H � D, even H = ∞. Chan et al. used this kernel ridge
regression algorithm in their global counting approach. I apply it now for the local approach defined by
Chen et al.
In kernel ridge regression, the task becomes to minimize the so called dual criterion

Jdual(A) =
1
2

tr
(

A>KA
)
+C · tr

(
A>KKA−2Y>KA+Y>Y

)
, where (22)

K ∈ RN×N and Ki j = k(xi,x j) (23)

for which the optimal solution is

A∗ =
(

K +
1

2C
IN×N

)−1

Y. (24)

Prediction for new test input vectors requires storing all training input vectors. The prediction is done using
the following formula:

ŷ(x) = k(x)A, where (25)

k(x) ∈ RN and k(x)i = k(xtraining
i ,x). (26)

For the sake of simplicity, I use the Gaussian radial basis function (also known as exponential kernel) as the
kernel function.

kRBF(xi,x j) = exp
(
−γ ·

∣∣∣∣xi−x j
∣∣∣∣2) (27)
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This kernel has only one hyperparameter (γ), so it takes less time to perform search in the hyperparameter
space than with the kernel of Chan et al. which has 4 hyperparameters. The hyperparameter γ = 1

2σ
controls

the variance (width) of the radial basis functions. In the Gaussian process interpretation of kernel ridge
regression, this corresponds to enforcing more or less covariance between the outputs that belong to faraway
input points. A small γ value results in a smoother approximation, since even inputs that are far away have
highly correlated outputs.

3.3.3 Data normalization

Both the linear ridge regression and the kernel ridge regression algorithm treats all of the input dimensions
equally. In linear ridge regression there is a single C value controlling the regularization strength, even
though weights acting on different features would need different treatment (in Bayesian terms: we should
have different priors on different weights). In kernel ridge regression, the RBF kernel also treats all di-
mensions the same way. This only makes sense if the dimensions have the same scale. The scale (range)
of an input dimension can be formalized as the sample variance of that dimension’s values in the training
set. Therefore, I normalize the input data to zero mean and unit variance in each dimension. The mean
and variance of each dimension is stored, and the same normalization is also applied to each input in the
validation/test set (using the mean and variance values calculated from the training set). The subtraction of
the mean has actually no effect in this case, since the bias is not regularized in the linear model, and in the
kernel version the RBF kernel only uses differences.

3.4 Implementation
I implemented the solution described above using Microsoft’s .NET 4.0 platform and the C# programming
language. For image processing I use EmguCV, a wrapper library around OpenCV version 2.4.9. For linear
algebra calculations the Math.NET Numerics library is used. I implemented all feature extraction myself.

4 Results
I evaluated my models using the mall dataset[Che13] provided by Chen et al. of the Queen Mary University
of London. Some properties of this dataset:

• Number of frames: 2000

• Resolution: 320x240 1

• Frames per second: <2

• Number of people per frame: 13-53

• Number of people instances in total: 62325

4.1 Separation of data to training, validation and test set
In order to have comparable results to the ones in the publication of Chen et al., I will apply the same test
set, that is frames #801-2000. In order to keep the process free of bias, I do not use the test set to tune any
hyperparameter, in fact it will only be used for the final testing. For this reason, I divide the frames 1-800
into a training set (80%) and a validation set (20%). The validation set is used to evaluate models trained
on the training set with different hyperparameter settings.

• Training set: Frames 1-640

• Validation set: Frames 641-800
1Although the authors give 320x240 in their paper[CLG+12], the data on their website contains 640x480 resolution images. I used

the 320x240 scaled down versions in my results.
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• Test set: Frames 801-2000

Cross-validation, a popular method for tuning hyperparameters, is not appropriate here. In cross-validation
the training set is subdivided into n parts. For each hyperparameter configuration n experiments are per-
fomed, in each case one part is used for testing and the others together for training. Then the hyperparameter
combination that attains the lowest average error is chosen. In the case of people counting, however, the
data are obtained from a video stream and have an inherent ordering. If we used cross-validation, the test
samples would be in most cases between the frames that are used for training. This would lead to interpola-
tion rather than extrapolation, which is undesirable[CLV08], so the validation is done using a fixed part of
the dataset that comes after all the training frames.

4.2 Effect of hyperparameters
I examined the effect of changing various hyperparameters on the validation set (test set was kept separate
for final testing).

4.2.1 Regularization coefficient and RBF kernel length scale

Multivariate ridge regression has one parameter, the one that balances the trade-off between regularization
and fitting the data (C). Figure 12 (left) shows that the optimum is around C = 0.001. For smaller values of
C overfitting occurs, for larger ones underfitting. Multivariate kernel ridge regression with RBF kernel has
two parameters: C, and the parameter controlling the length scale of the kernel (γ). I used grid search to
optimize these hyperparameters (see Figure 12, right).

Figure 12: Effect of hyperparameters on the mean absolute error, calculated on the validation set with
linear ridge (left) and kernel ridge (right) regression. The white cross marks the chosen hyperparameter
configuration.

4.2.2 Grid resolution and perspective normalization

Grid subdivision Without perspective correction With perspective correction
1×1 1.88 1.88
2×2 1.62 1.58
4×4 1.46 1.47
6×6 1.70 1.71

Figure 13: Mean absolute validation error depending on the grid resolution and perspective correction.

This table shows how the mean absolute error varies with the grid resolution and whether linear perspective
correction is applied. Surprisingly, perspective correction has almost no effect on the results. It can also be
seen that the 4×4 grid size gives the best estimates.
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Having determined the best settings and hyperparameters on the validation set, we can now turn to the test
set to see how it performs on previously unseen data.

4.3 Global counting evaluation

In the following, the global (per frame) people count estimation is evaluated on the mall dataset. Even
though the evaluation is done globally, the 8x8 grid is still used in the method, and the global count is
obtained by summing up the predictions for the individual cells (without any rounding to integers).
Following Chen et al., three evaluation criteria are used: mean squared error, mean absolute error and mean
relative deviation error. Let M denote the number of test frames, K the number of grid cells Ŷ ∈ RM×K the
output predicted by the model and Y ∈ RM×K the ground truth people count values.

Esq =
1
M

M

∑
i=1

(
K

∑
j=1

Ŷi j−
K

∑
j=1

Yi j

)2

Eabs =
1
M

M

∑
i=1

∣∣∣∣∣ K

∑
j=1

Ŷi j−
K

∑
j=1

Yi j

∣∣∣∣∣
Erel =

1
M

M

∑
i=1

∣∣∣∑K
j=1 Ŷi j−∑

K
j=1 Yi j

∣∣∣
∑

K
j=1 Yi j

(28)

Table 4.3 show the performance comparison of different methods. My linear ridge regression uses C =
2× 10−3, the kernel version uses C = 100,γ = 10−5, values obtained by logarithmic grid search over the
hyperparameter space.

Learning algorithm Esq Eabs Erel
Linear ridge regression 8×8 (own) 8.72 2.38 0.0768
Kernel ridge regression 8×8 (own) 8.43 2.34 0.0756
Kernel ridge regression 4×4 (own) 7.94 2.24 0.0706

Linear ridge regression 8×8 (Chen et al.) 15.7 3.15 0.0986

Figure 14: Comparison of different methods, using a 320× 240 px resolution version of the Mall dataset
(trained on frames 1-800, evaluated on frames 801-2000).

The kernelized algorithm slightly outperforms the linear one and both of my models outperform the one
presented by Chen et al.

4.4 Cell-based inspections

Following the global evaluation, let us now analyze how the grid-based local estimation makes use of
information sharing and feature mining.

4.4.1 Information sharing

The weight matrix W obtained by linear ridge regression can be used to quantify how much the features
from a given cell contribute to the estimation of the people count in another (or the same) cell. A feature is
important if the absolute value of the corresponding weight is large. Let p ∈ {1, ...,K} denote the index of
the source cell and q ∈ {1, ...,K} that of the target cell. We then compute the sum of the absolute values of
the weights in W that correspond to features extracted from cell p and are used for estimating the count in
cell q. This value is then normalized by dividing with the sum of absolute values of all weights that are used
in the estimation for cell q. Thus, the formula for measuring information sharing from cell p to q becomes:

Spq =
∑i∈{indices of features extracted from cell p}

∣∣Wiq
∣∣

∑
D
i=1
∣∣Wiq

∣∣ (29)
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Figure 15 shows the result for each pair of cells as a color coded matrix where a brighter color means higher
information sharing.

Figure 15: Illustration of how the features extracted from a given cell influence the prediction of the people
count in other cells. This matrix has K = 64 rows and column. One row of it corresponds to one source
cell, one column to one target cell. Brighter color means more influence.

It can be readily seen that there are diagonal structures in the matrix shifted by 8 (the number of cells in a
row of the grid). This shows that the greatest influence comes from the target cell’s own features, and the
ones from above and below it. There are two diagonals to the to the bottom direction, whereas only one
to the top direction. This means that even the features in a cell that is by two cells lower can be important
for the estimation. Looking at the dataset, it is clear that this is caused by vertical shapes of the bodies and
also reflections and shadows on the floor, as these appear much lower than the reference points (head) of
the people.

4.4.2 Kernel weight matrix

The weight matrix A ∈ RN×K obtained by kernel ridge regression determines the importance of each frame
for the estimation of the people count in each grid cell. Figure 16 shows the matrix as follows:

Zpq =

∣∣Apq
∣∣

∑
N
i=1

∣∣Aiq
∣∣ (30)

The green marking shows that certain grid cells’ people counts (corresponding to one column here) are best
estimated by comparing the features with those extracted from a certain time interval (a certain range of
frames). Vertical stripes of distance 8 are also visible here. This is because cells that are above/under each
other have relevant action happening around the same time in the video.

4.5 Feature importance

In Figure 17 the importance of features is illustrated. It is measured by the sum of the absolute values of
weights associated with each type of feature (irrespective of the cell from which it is extracted). It can be
seen that the values for the same kind of features (such as GLCM entropy) have very similar values.
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Figure 16: Illustration of the absolute values of the kernel weight matrix A after division by the sum of each
column (same principle as with the weight matrix in Figure 15. The black stripes show that those cells are
always empty according to the model.

5 Discussion and summary

In this seminar report I examined the task of counting people in crowded public places by means of com-
puter vision algorithms applied to CCTV video frames. I reviewed previous works about the topic and
elaborated on feature-based regression approaches. I described the different features that can be extracted
from the image frames and gave the theoretical background for the linear approximation of perspective
normalization.
I presented the results of my own implementation of a feature-based regression approach to localized people
counting, based strongly on the work of Chen et al. My solution turned out to have better performance than
the one described in the paper of Chen et al., reaching the performance of ±7.5% mean relative deviation
error per frame. This may be due to differences in the details of feature extraction (e.g. different background
segmentation), me using data normalization or different hyperparameter choices. I inspected the weight
matrices that were obtained during the optimization of a multivariate ridge regression and a multivariate
kernel ridge regression model.
One disadvantage of this approach is that with each new camera position a new labeled training set must be
created and the regression algorithm must be tuned to new optimal hyperparameters by grid search. This
may be solved by using many labeled datasets created at a wide range of different locations, as one could
then create a system for learning the task in general and not only for one specific dataset.
In conclusion, it can be stated that the presented solution performs well in a controlled setting, but there is
still room for improvement regarding the adaptation to real-life usage scenarios.
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