Feature mining for localized crowd counting Seminar Computer Vision and Machine Learning

István Sárándi

Advisor: Wolfgang Mehner

RWTH Aachen University

istvan.sarandi@rwth-aachen.de

July 29, 2013

1 Introduction

2 Related work

István Sárándi (RWTH)

I ∃ ►

- ∢ ⊢⊒ →

1. Introduction

- 一司

Introduction - CCTV surveillance

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 4 / 51

< A > < 3

Introduction - CCTV surveillance

Ubiquity

Millions of cameras (UK: 1.8 million)

Applications

- Prevent crime
- Prevent dangerous crowd dynamics
- Create statistics
- Improve advertisement, etc.

Introduction - Crowd counting

How many people are there?

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 6 / 51

Functional requirements

- Locality (local-global)
- Directionality (coming-going)
- Quantitative (exact count) vs. qualitative (discrete crowdedness classes)

Functional requirements

- Locality (local-global)
- Directionality (coming-going)
- Quantitative (exact count) vs. qualitative (discrete crowdedness classes)

Non-functional requirements

- Robustness
 - Lighting conditions
 - Camera placement
- Low computational complexity
- Preserve privacy

1 Introduction

2 Related work

István Sárándi (RWTH)

I ∃ ►

- ∢ ⊢⊒ →

2. Related work

Image: A math a math

Related work

Two main approaches exist

Detection-based

- Detect each pedestrian
- Count them

Related work

Two main approaches exist

Detection-based

- Detect each pedestrian
- Count them

Regression-based

- Extract feature vector
- Learn a mapping from features to people count (machine learning)

Detection may be

Static

- Detection in each frame independently
- Sliding window + classification

Detection may be

Static

- Detection in each frame independently
- Sliding window + classification

Dynamic

- Detection based on multiple frames (high FPS needed)
- Detect pixel movements (optical flow)
- Cluster trajectories (pixels moving together)

Advantages

- Locality trivial
- Robust detectors exist
- Less manual work for ground truth

Advantages

- Locality trivial
- Robust detectors exist
- Less manual work for ground truth

Disadvantages

- Occlusion problems
- Computationally expensive
- Privacy concerns

Two steps:

Extract features

- Frame \rightarrow feature vector
- E.g. based on edges

Two steps:

Extract features

- Frame \rightarrow feature vector
- E.g. based on edges

Learn regression

- Supervised training
- Ground truth people count needed
- Many possible algorithms
 - Linear regression
 - SVM
 - Neural networks, etc.

Advantages

- Computationally efficient
- Privacy preserving

Advantages

- Computationally efficient
- Privacy preserving

Disadvantages

Robustness problems

István Sárándi (RWTH)

Locality not automatic

Related work - Locality

- Grid subdivision
- Extract features from each cell
- Estimate head count in each cell

Related work - Locality

Same model used for all cells

- Train one regression model
- The single model has to estimate the head count in any cell

Same model used for all cells

- Train one regression model
- The single model has to estimate the head count in any cell

Separate model for each cell

- Train one regression model per cell
- Feature mining
 - Each feature can have different role/weight in different cells

Same model used for all cells

- Train one regression model
- The single model has to estimate the head count in any cell

Separate model for each cell

- Train one regression model per cell
- Feature mining
 - Each feature can have different role/weight in different cells

One multi-output model for the whole frame

- Regression input: feature vectors from cells concatenated
- Desired output: vector of head counts in each cell
- Information sharing between cells
 - Each cell's features contribute to every cell's head count estimation

1 Introduction

2 Related work

István Sárándi (RWTH)

- 一司

3. Methodology

э

Image: A match a ma

Methodology

Based on Feature mining for localised crowd counting Chen et al. 2012

As a black box

- Quantitative
- Local
- Privacy preserving
- Computationally efficient

Methodology

Based on Feature mining for localised crowd counting Chen et al. 2012

As a black box

- Quantitative
- Local
- Privacy preserving
- Computationally efficient

As a transparent box

- Regression-based
- Locality with grid and information sharing
- Features based on foreground mask, foreground edges, texture
- Regression with (kernel) ridge regression

Methodology - Feature extraction

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 20 / 51

Methodology - Feature extraction

Foreground segmentation needed

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 20 / 51

Thresholded absolute difference from empty scene

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 21 / 51

Thresholded difference

Advantages

- Easy to implement
- Efficient to compute

Thresholded difference

Advantages

- Easy to implement
- Efficient to compute

Disadvantages

Not robust to lighting change and camera repositioning

Thresholded difference

Advantages

- Easy to implement
- Efficient to compute

Disadvantages

Not robust to lighting change and camera repositioning

Robust alternative: Background model

- Mixture-of-Gaussians color distribution for each pixel
- More weight to recent frames
- Foreground: observed color is improbable

Background model:

Advantages

Adapts to new conditions

Background model:

Advantages

Adapts to new conditions

Disadvantages

- Sequential model
- People standing/sitting for long are considered background

Methodology - Feature extraction - Segmentation

Background model:

Advantages

Adapts to new conditions

Disadvantages

- Sequential model
- People standing/sitting for long are considered background

Left: thresholded difference; right: background model a .

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 23 / 51

Methodology - Feature extraction

Low-level image features extracted (29 for each cell)

1. Foreground mask-based

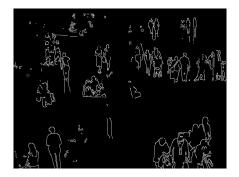
- Foreground area
- Perimeter length: obtained by morphological operations
- Area/perimeter ratio: helps even if redundant
- Perimeter orientation histogram

2. Edge-based (Canny)

- Number of edge pixels
- Edge orientation histogram
- Minkowski fractal dimension

2. Edge-based (Canny)

- Number of edge pixels
- Edge orientation histogram
- Minkowski fractal dimension



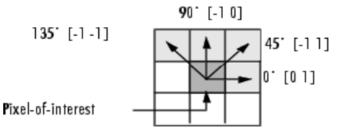
Methodology - Feature extraction

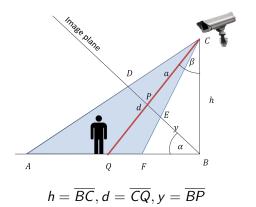
3. Texture-based (gray-level co-occurrence)

• Homogeneity:
$$H = \sum_{i,j} \frac{N_{ij}}{1+(i-j)^2}$$

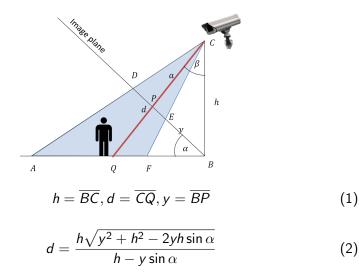
• Energy:
$$E = \sum_{i,j} N_{ij}^2$$

• Entropy:
$$S = -\sum_{i,j} N_{ij} \log N_{ij}$$



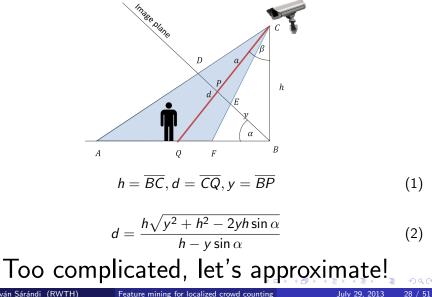


(1)



István Sárándi (RWTH)

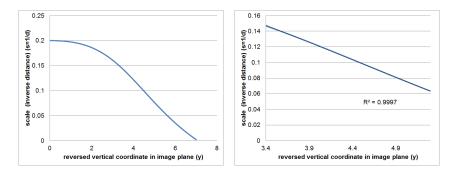
July 29, 2013 28 / 51



István Sárándi (RWTH)

Feature mining for localized crowd counting

Plot of $\frac{1}{d}$



July 29, 2013 29 / 51

Inferring the linear approximation

Modify feature calculations with scale correction.

If the feature grows **linearly** with size

Example: perimeter

$$p = \sum_{(x,y): P(x,y)=1} \frac{1}{s(x,y)}$$

(3)

Modify feature calculations with scale correction.

р

If the feature grows **linearly** with size

Example: perimeter

$$P = \sum_{(x,y): P(x,y)=1} \frac{1}{s(x,y)}$$

If the feature grows quadratically with size

Example: foreground area

$$f = \sum_{(x,y): M(x,y)=1} \frac{1}{s^2(x,y)}$$

István Sárándi (RWTH)

(3)

(4)

Goal

Given a training set of the form

István Sárándi (RWTH)

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{z}_i^1, \mathbf{z}_i^2, \dots, \mathbf{z}_i^K \end{bmatrix} \in \mathbb{R}^D$$
$$\mathbf{y}_i = \begin{bmatrix} u_i^1, u_i^2, \dots, u_i^K \end{bmatrix} \in \mathbb{N}^K$$

Estimate the output \mathbf{y}_{new} for a new input \mathbf{x}_{new} .

(5)

Goal

Given a training set of the form

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{z}_i^1, \mathbf{z}_i^2, \dots, \mathbf{z}_i^K \end{bmatrix} \in \mathbb{R}^D$$
$$\mathbf{y}_i = \begin{bmatrix} u_i^1, u_i^2, \dots, u_i^K \end{bmatrix} \in \mathbb{N}^K$$

Estimate the output \mathbf{y}_{new} for a new input \mathbf{x}_{new} .

Used algorithms

- Multivariate ridge regression
- Multivariate kernel ridge regression (a.k.a. Gaussian process regression)

(5)

Goal

Given a training set of the form

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{z}_i^1, \mathbf{z}_i^2, \dots, \mathbf{z}_i^K \end{bmatrix} \in \mathbb{R}^D$$
$$\mathbf{y}_i = \begin{bmatrix} u_i^1, u_i^2, \dots, u_i^K \end{bmatrix} \in \mathbb{N}^K$$

Estimate the output \mathbf{y}_{new} for a new input \mathbf{x}_{new} .

Used algorithms

- Multivariate ridge regression
- Multivariate kernel ridge regression (a.k.a. Gaussian process regression)

Note: Vectors will be row vectors

István Sárándi (RWTH)

(5)

Assumption: noisy linear function

$$\mathbf{y} = \mathbf{x}\mathbf{W} + \mathbf{b} + \epsilon_{noise} \tag{6}$$

Multivariate ridge regression

$$\min_{\mathbf{W},\mathbf{b}} \left\{ \frac{1}{2} \left| |\mathbf{W}||_F^2 + C \sum_{i=1}^N \left| |\mathbf{y}_i - (\mathbf{x}_i \mathbf{W} + \mathbf{b})| \right|_F^2 \right\}$$

Interpretations

(7)

István Sárándi (RWTH)

Assumption: noisy linear function

$$\mathbf{y} = \mathbf{x}\mathbf{W} + \mathbf{b} + \epsilon_{noise} \tag{6}$$

Multivariate ridge regression

$$\min_{\mathbf{W},\mathbf{b}} \left\{ \frac{1}{2} \left| |\mathbf{W}||_F^2 + C \sum_{i=1}^N \left| |\mathbf{y}_i - (\mathbf{x}_i \mathbf{W} + \mathbf{b})| \right|_F^2 \right\}$$

Interpretations

• Punish large weights to avoid overfitting

(7)

Assumption: noisy linear function

$$\mathbf{y} = \mathbf{x}\mathbf{W} + \mathbf{b} + \epsilon_{noise} \tag{6}$$

Multivariate ridge regression

$$\min_{\mathbf{W},\mathbf{b}} \left\{ \frac{1}{2} \left| |\mathbf{W}||_F^2 + C \sum_{i=1}^N \left| |\mathbf{y}_i - (\mathbf{x}_i \mathbf{W} + \mathbf{b})| \right|_F^2 \right\}$$

Interpretations

- Punish large weights to avoid overfitting
- Maximum-a-posteriori (priors: regularization, noise: least-squares)

(7

Assumption: noisy linear function

$$\mathbf{y} = \mathbf{x}\mathbf{W} + \mathbf{b} + \epsilon_{noise} \tag{6}$$

Multivariate ridge regression

$$\min_{\mathbf{W},\mathbf{b}} \left\{ \frac{1}{2} \left| |\mathbf{W}| \right|_F^2 + C \sum_{i=1}^N \left| |\mathbf{y}_i - (\mathbf{x}_i \mathbf{W} + \mathbf{b})| \right|_F^2 \right\}$$

Interpretations

- Punish large weights to avoid overfitting
- Maximum-a-posteriori (priors: regularization, noise: least-squares)
- Minimize L₂ loss considering all weight possibilities together (Gaussians behave nicely)

(7)

Assumption: noisy linear function in a transformed space

$$\mathbf{y} = \phi(\mathbf{x})\mathbf{W} + \epsilon_{noise} \tag{8}$$

Multivariate ridge regression with basis functions

$$\min_{\mathbf{W}} \left\{ \frac{1}{2} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{N} ||\mathbf{y}_{i} - \phi(\mathbf{x}_{i})\mathbf{W}||_{F}^{2} \right\} \tag{9}$$

$$\min_{\mathbf{A}} \left\{ \frac{1}{2} \operatorname{tr} \left(\mathbf{A}^{\top} \Phi \Phi^{\top} \mathbf{A} \right) + C \cdot \operatorname{tr} \left(\mathbf{A}^{\top} \Phi \Phi^{\top} \Phi \Phi^{\top} \mathbf{A} - 2\mathbf{Y}^{\top} \Phi \Phi^{\top} \mathbf{A} + \mathbf{Y}^{\top} \mathbf{Y} \right) \right\} \tag{10}$$

Kernel trick

Avoid defining $\phi(\cdot)$, define directly $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})\phi(\mathbf{x}')^{\top}$

$$k_{RBF}(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \cdot ||\mathbf{x}_i - \mathbf{x}_j||^2\right)$$
(11)

Multivariate kernel ridge regression

$$\min_{\mathbf{A}} \left\{ \frac{1}{2} \operatorname{tr} \left(\mathbf{A}^{\top} \mathbf{K} \mathbf{A} \right) + C \cdot \operatorname{tr} \left(\mathbf{A}^{\top} \mathbf{K} \mathbf{K} \mathbf{A} - 2 \mathbf{Y}^{\top} \mathbf{K} \mathbf{A} + \mathbf{Y}^{\top} \mathbf{Y} \right) \right\}$$
(12)

$$\mathbf{A}^* = \left(\mathbf{K} + \frac{1}{2C}\mathbf{I}_{N \times N}\right)^{-1} \mathbf{Y}$$
(13)

$$\hat{\mathbf{y}}(\mathbf{x}) = \mathbf{k}(\mathbf{x})\mathbf{A}$$
 (14)

(日) (同) (日) (日) (日)

Alternative interpretation: Gaussian process

István Sárándi (RWTH)

Until now all input dimensions (image features) are treated the same.

Until now all input dimensions (image features) are treated the same.

• Linear ridge: common *C* value regularizes the weights acting on all dimensions

Until now all input dimensions (image features) are treated the same.

- Linear ridge: common *C* value regularizes the weights acting on all dimensions
- Kernel ridge: the RBF kernel treats all dimensions the same

Until now all input dimensions (image features) are treated the same.

- Linear ridge: common *C* value regularizes the weights acting on all dimensions
- Kernel ridge: the RBF kernel treats all dimensions the same

Only makes sense if the input dimensions have the same scale: **Normalization!**

Until now all input dimensions (image features) are treated the same.

- Linear ridge: common *C* value regularizes the weights acting on all dimensions
- Kernel ridge: the RBF kernel treats all dimensions the same

Only makes sense if the input dimensions have the same scale: **Normalization!**

- Calculate sample mean and variance for each dimension from the training set
- Transform the training set to have zero mean and unit variance
- Use the same transformation on each test input

Methodology - Implementation

- $\bullet~C\#~on$.NET 4.0
- EmguCV (OpenCV 2.4.9)
- Math.NET Numerics 2.5

1 Introduction

2 Related work

István Sárándi (RWTH)

- 4 ⊒ →

- 一司

4. Results

Image: A match a ma

Results - Dataset

Mall dataset

- 2000 frames
- 640×480
- 2 FPS
- 13-53 people per frame

- Training set: Frames 1-640 (22 minutes)
- Validation set: Frames 641-800 (5 minutes)
- Test set: Frames 801-2000 (40 minutes)

- Training set: Frames 1-640 (22 minutes)
- Validation set: Frames 641-800 (5 minutes)
- Test set: Frames 801-2000 (40 minutes)

Avoiding bias:

- Experiment with settings and tune hyperparameters without touching the test set
- Train the selected method on the training+validation set
- Evaluate on the test set with no feedback

Evaluation metrics:

$$E_{sq} = \frac{1}{M} \sum_{i=1}^{M} \left(\sum_{j=1}^{K} \hat{Y}_{ij} - \sum_{j=1}^{K} Y_{ij} \right)^{2}$$

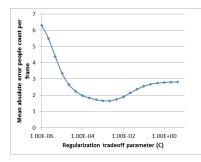
$$E_{abs} = \frac{1}{M} \sum_{i=1}^{M} \left| \sum_{j=1}^{K} \hat{Y}_{ij} - \sum_{j=1}^{K} Y_{ij} \right|$$

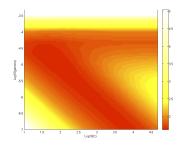
$$E_{rel} = \frac{1}{M} \sum_{i=1}^{M} \frac{\left| \sum_{j=1}^{K} \hat{Y}_{ij} - \sum_{j=1}^{K} Y_{ij} \right|}{\sum_{j=1}^{K} Y_{ij}}$$

(15)

イロト イ団ト イヨト イヨト

Hyperparameter tuning:





István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 43 / 51

э

Observations:

- Perspective correction has no effect (mean abs. error about 1% worse)
- $\bullet~4\times4$ is the best grid subdivision
- Kernel ridge is somewhat better than linear ridge
- $\bullet\,$ Scaling down to 320 $\times\,$ 240 improves the estimation

Most promising combination:

- No perspective correction
- 4×4 grid subdivision
- Kernel ridge
- 320 × 240

Now let's check the performace on the test set!

			E _{rel}
Linear ridge regression 8×8 (Chen et al.)	15.7	3.15	0.0986

Learning algorithm			E _{rel}
Linear ridge regression 8×8 (Chen et al.)	15.7	3.15	0.0986
Linear ridge regression 8×8 (own)	8.72	2.38	0.0768

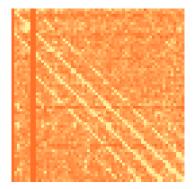
Learning algorithm	E _{sq}	E _{abs}	E _{rel}
Linear ridge regression 8×8 (Chen et al.)	15.7	3.15	0.0986
Linear ridge regression 8×8 (own)	8.72	2.38	0.0768
Kernel ridge regression 8 $ imes$ 8 (own)	8.43	2.34	0.0756

► < ∃ ►</p>

Learning algorithm	E _{sq}	E _{abs}	E _{rel}
Linear ridge regression 8×8 (Chen et al.)	15.7	3.15	0.0986
Linear ridge regression 8×8 (own)	8.72	2.38	0.0768
Kernel ridge regression 8×8 (own)	8.43	2.34	0.0756
Kernel ridge regression $4 imes 4$ (own)	7.94	2.24	0.0706

Mean absolute error 29% smaller than in the paper.

Information sharing between cells (8×8)



$$S_{pq} = \frac{\sum_{i \in \{\text{indices of features extracted from cell } p\}} |W_{iq}|}{\sum_{i=1}^{D} |W_{iq}|}$$
(16)

István Sárándi (RWTH)

Feature mining for localized crowd counting

1 Introduction

2 Related work

István Sárándi (RWTH)

- 一司

4. Summary

э

・ロト ・日下・ ・日下

Summary

In short

- Reviewed requirements for the crowd counting problem
- Focused on the regression-based approach
- Used locality with grid and information sharing
- Extracted features (with background segmentation)
- Tuned hyperparameters of regression

Summary

In short

- Reviewed requirements for the crowd counting problem
- Focused on the regression-based approach
- Used locality with grid and information sharing
- Extracted features (with background segmentation)
- Tuned hyperparameters of regression

Room for improvement

- Use better features (tune parameters, add new features)
- Use better regression algorithm (neural networks, SVM, ...)
- Use features from previous frames

Thank you for your attention!

István Sárándi (RWTH)

Feature mining for localized crowd counting

July 29, 2013 51 / 51